Cloud-Based Text Analytics: Harvesting, Cleaning and Analyzing Corporate Earnings Conference Calls

MICHAEL (CHUANCAI) ZHANG, VIKRAM GAZULA, DAN STONE, HONG XIE

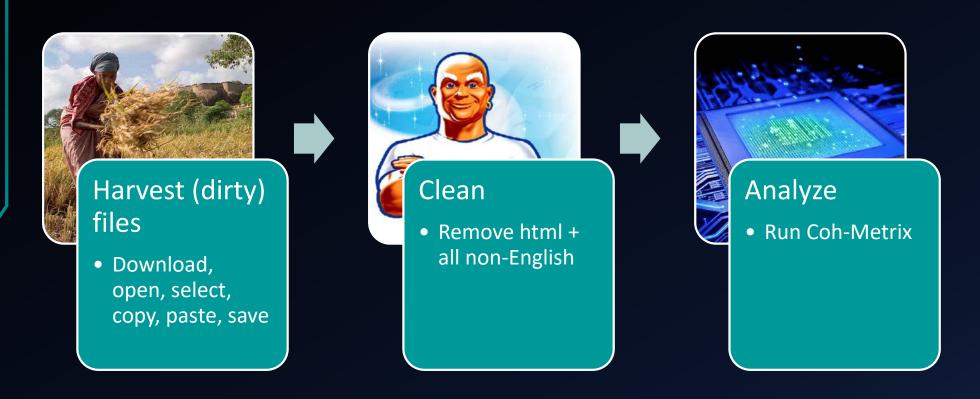
Thanks!

- Jim Griffioen Director of Center for Computational Science
- Gatton College of Business \$
- Von Allmen School of Accountancy \$
- Amazon Web Services (AWS) help and support
- Vikram Gazula IT manager Center for Computational Science
- My coauthors

The research problem

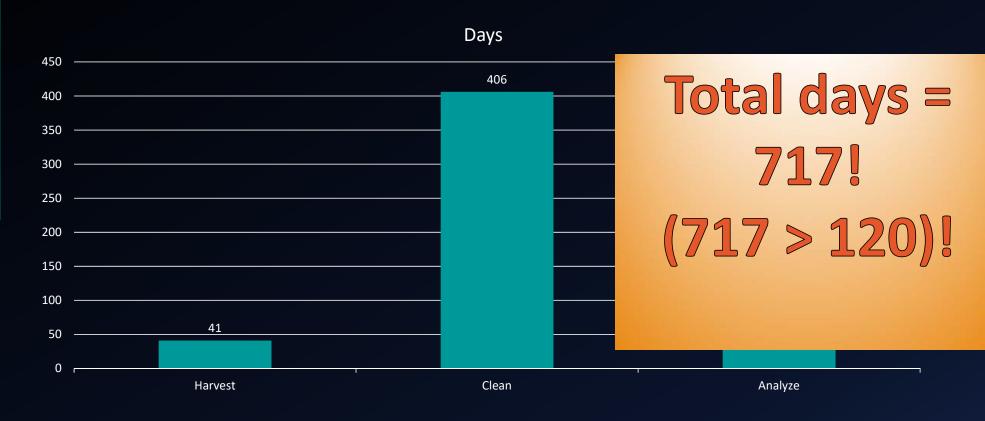
- Corporate earnings conference calls convey information to financial markets
- Existing analysis of conference calls = "bag of words" analysis
 - Simple, short word lists
 - No analysis of sentences, paragraphs, context, or meaning
- Our goal: analyze conference call data using emerging "holistic" text analytics (i.e., Coh-Metrix)
- Research question: Does call "cohesion" matter to markets?
 - Cohesion = relations among words, types of words, sentences and paragraphs in a document (8 dimensions)

The practical problem


- Cohmetrix Software
 - Good news:
 - Linguistically state of the art, includes lexicons (complete dictionaries), syntax, domain knowledge (i.e., Latent Semantic Analysis), rhetorical structure
 - Bad news:
 - Not open-source (can't reverse engineer)
 - Computationally slow
- Conference call data
 - Available, "big" and dirty (~ 200,000 files)

The race

- First-year research papers → due in 4 months (i.e., 120 days)
- Scope:
 - ~ 200,000 data files
- The PhD student..... was nervous


The process - conceptually

Project: Manual & Local Resources – Estimated Days to Completion

Project: Manual – Estimated Days to Completion

Help! Automate / Scale Processes

 Web Crawler using Stata

- Regular expressions in Stata
- four stage parsing strategy

Analyze

Vikram (Michael helping): Run on AWS cloud

Why AWS (EC2- Elastic Compute)?

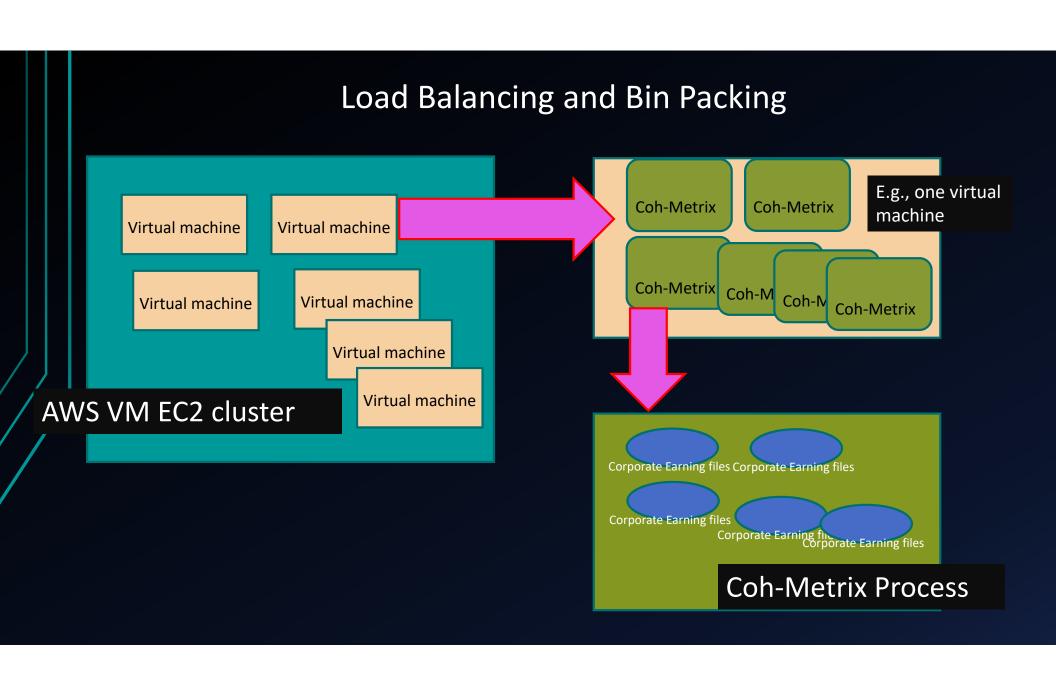
- No local UKY resources to run Coh-Metrix (Windows) at scale
- AWS platform for software testing using "clean" installs (no software conflicts & correct available tools)
- Prototype: create working machines
- Post-prototyping, create new "virtual machines" for rapid scalability and load sharing
- Cost savings Spot Market (\$) vs On Demand pricing (\$\$\$) vs buying hardware (\$\$\$)
- AWS \$100 credit for prototyping

Analyzing files on AWS

Problem:

- Coh-Metrix software does not run in parallel
- Each file separately loaded and processed
- Processing time varies (file size + Cohmetrix analysis (metadata))

Solution:


- Knapsack problem: use one-Dimensional Bin Packing Algorithm
- Minimize number of bins (machines), process all files, equalize processing time, minimize cost

The Knapsack problem (Wikipedia)

- Given n items to put in a sack, each with a unique weight, determine the number of items to include in m sacks so that the total weight is equalized
- Here: Given 200,000 files, each with a unique processing time, determine the needed virtual machines, so that total processing time is equalized (and therefore total cost is minimized)

How to load balance 200K files across virtual machines

- Bin Packing Solution:
 - Input: 200K+ files with varying sizes (few KB to several MB)
 - Analyze the distribution of file sizes across multiple VM's with minimal wastage of CPU time (and money!) across virtual machines
 - Task: Find a packing of files in equal-sized bins that minimizes the number of bins (Virtual Machines) used

Running Coh-Metrix on AWS Spot Market

- Task demands: 200,000 files can take 5 to 30 minutes to process
- Processing: running many copies of software on each machine (~ 25)
 - Specify: hardware 32 core virtual machines
- Identify AWS zones (physical locations) to run software (minimize cost)
- Spread (binpack): Match files to virtual machines (how many machines?)
- The process:
 - Step 1: Create Virtual machines (based on prototype)
 - Step 2: Deploy machines (Map to AWS zones and binpack)
 - Step 3: Monitor Processing (Spot Market).
 - If outbid or prices changes, then bid higher and / or return to Step 2
 - Over time, learned to do this more efficiently

Results

- It worked!
- Complete results in ~ 90 days
- Cost ~ \$1,000

What's next? Additional "holistic" analyses of market information

- SEC data?
- Social media data?
- Audit

